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Self-Consistent-Field Theory for Confined Polyelectrolyte Chains
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The Poisson—Boltzmann theory of the forces between two charged macroscopic surfaces has been generalized to a case where
the intervening space contains a uni-univalent electrolyte as well as long polyelectrolyte chains. The polyelectrolyte chaing
bear charges of opposite sign with respect to the fixed charges on the confining surfaces. The approach is based on the
self-consistent-field (SCF) theory widely used in the context of the polymer excluded volume interactions. Numerica] as
well as approximate analytical solutions of the SCF equations have been obtained in the limit of ground-state dominance
and the connection between the polyelectrolyte conformation and the intersurface forces has been investigated for different
values of the parameters describing the system. The most important characteristic of the interaction forces is a region of
intersurface separations characterized by net attractive forces between bounding surfaces, stemming from the bridging of
polyelectrolyte chains between the two charged surfaces. These attractive forces are of different nature than the Lifshitz-vap
der Waals interactions. They appear to decrease approximately exponentially with separation but can be much stronger

in the overall magnitude.

I. Introduction

Electrostatic interactions between macroscopic surfaces with
fixed charges immersed in an aqueous electrolyte with mobile
charge carriers are essential in assessing the stability of charged
(bio)colloids that play an important role in numerous chemical
and biochemical systems. Their study has been extensive and the
understanding reached on the theoretical level is usually summed
under the heading of the DLVO theory.! In this framework the
electrostatic interactions between macroscopic bodies are broken
into two disjointed contributions. First of all there is a contrib-
tution that has its origin in the creation of double layers close to
the charged surfaces. Their existence is due to the interplay of
entropic effects that favor homogeneous distribution of mobile
charges, and electrostatic attraction between the charges on the
surfaces and their counterions in the aqueous environment, de-
scribed on the level of the Poisson-Boltzmann (PB) equation. This
contribution to the total force between the surfaces is repulsive
if the surfaces bear charges of the same sign. The second con-
tribution is attractive, irrespective of the charges on the surfaces,
and has its origin in the fluctuations (thermodynamic as well as
quantum mechanical) of the local electrostatic fields in the di-
electric media involved. It is usually referred to as the van der
Waals-Lifshitz interaction.

The original DLVO point of view on the electrostatic inter-
actions between macroscopic surfaces based on the Poisson—
Boltzmann equation has proved to be inadequate in several re-
spects, but the introduction of some effective parameters (e.g.,
Stern layer, effective surface charge) can usually save the theory
and make it conform to the experiment.> There are cases,
however, where mere fitting of the parameters is not enough to
make the DLVO theory agree with experiments.2 In fact it does
not even predict correctly the sign of the electrostatic interaction.?
For example, in a divalent electrolyte the forces between equaly
charged surfaces can become attractive for quite reasonable values
of the model system parameters as shown by advanced statistical
mechanical calculations and as can be inferred also from ex-
perimental studies.? Cases like this one made us all aware that
the mean-field ansatz implicit in the PB theory can be completely
off the mark if the electrostatic coupling in the system is large
enough. A quite substantial upgrading of the Poisson-Boltzmann
theory is needed to go beyond the mean-field approximation and
into the regime where local fluctuations in the mobile charge
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density distribution begin to dominate the free energy.* Such
an upgrading has been recently worked out on an accuracy level
equal to the one achieved by the bulk-liquid-state theories.2
The present study will be concerned with a modification in the
composition of the model system standardly taken as a starting
point of the DLVO theory. To the aqueous electrolyte, described
in the primitive model framework and spanning the intersurface
space, we shall add flexible polyelectrolyte chains of charge op-
posite to the one fixed on the bounding surfaces and study the
changes in the interaction between charged, bounding surfaces
effected by this addition. This modification can be viewed from
two different directions. It is either an upgrading of the model
system that lies in the basis of the DLVO theory or a generali-
zation of the conditions imposed upon polyelectrolyte chains in
an ionic environment. The latter case too has a substantial history.
Polyelectrolytes are a subject by themselves’ and the statistical
mechanics of a single polyelectrolyte chain in the bulk has been
worked out on different levels of approximations starting from
the seminal work of Richmond. On the other side, the problem
of a confined (neutral) polymer, first addressed by Dolan and
Edwards® and independently by Richmond and Lal.? is also well
worked out and the forces between confining surfaces have been
studied in detail.'%?” The present problem lies somewhere between
these two and has been, to our knowledge, first approached by
Wiegel!! who studied the conformational properties of a single
polyelectrolyte chain in contact with a charged wall. His work
has been generalized by van Opheusden® to include two charged
surfaces with charged polymers in between. More recently
Miklavic and Mar&elja'? have made an attempt to assess the forces
between charged walls in a different system, where the polye-
lectrolytes are grafted to the charged bounding surfaces and
immersed in an electrolyte solution. A further step was taken by
Akesson, Woodward, and Jonsson'* who addressed the problem
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* of confined polyelectrolyte chains between two charged walls
without any intervening electrolyte. In their case it is only the
connectivity of the polyelectrolyte chain that separates their model

. system from the counterion—only case where the intersurface

§ space contains only mobile counterions. In spite of this similarity

% the int%surface forces bear almost no resemblance to the latter
case.!®

_: .In our treatment of the problem of confined polyelectrolyte

 chains immersed in an electrolyte solution we shall try to remain

as close to the Poisson~Boltzmann approach to a confined elec-
® trolyte as possible. We shall formulate the appropriate partition

- function in a form of a field theory quite similar to the one used

" in the case of a confined Coulomb fluid.* We showed for this case

¥ that the stationary point configuration of the local electrostatic

fields corresponds to the solution of the Poisson-Boltzmann
equation. Using the stationary point ansatz in the presence of

. additional polyelectrolyte chains will naturally lead to a gener-
alization of the Poisson—Boltzmann equation where the statistical

averages over the polymeric degrees of freedom will be included

" in a self-consistent manner. The equations derived by this pro-

cedure will be similar to those used in the self-consistent-field
(SCF) treatment of the polymer excluded volume and indeed
represent a variation on the SCF equations for the electrostatic
excluded-volume problem derived by Kholodenko and Beyerlein.!4
This new set of coupled self-consistent equations, which in turn
lead to a modified PB equation, will be solved numerically and
the nature of the solutions for different parameters characterizing
the state of the system will be investigated. Also some conclusions
will be drawn on the connection between the polyelectrolyte
conformation and the intersurface forces; specifically, we shall
demonstrate that the bridging mechanism, just as in the simpler
model system investigated by Akesson, Woodward and

Jonsson,'>? has a pronounced effect on the interaction forces

present in this system.

" The outline of the paper is as follows. In section IT we shall

define our model system and derive the general form of the

* partition function in the guise of a field theory similar to the one
used in the context of nonhomogeneous electrolyte. A second-order
perturbation expansion effected in section III will lead to an
approximate form of the interaction free energy that will serve
as an introduction to the self-consistent-field method, derived at
the end of this section. Section IV will start with the explicit form
of the SCF equations in the form of a modified Poisson—Boltzmann
equation for the local mean electrostatic potential and an equation
for the polyelectrolyte charge density distribution. Sections IV-VII
are self-contained and the reader not interested in formal details
can just skip the introductory sections II and III and start his
reading at the beginning of section IV, where the SCF equations
are derived from purely physical arguments. The SCF equations
will be solved numerically in section V for different values of the
characteristic parameters determining the state of the confined

_system. Two approximate analytical solutions of the SCF
equations will be derived in the next section for a very constrained
set of characteristic parameters. The final section will be devoted
to the critical discussion of the results obtained in the light of the
previous work relevant to the problem.

II. Model Description and Formalization

A combined model is utilized to specify the system under study.
. The uni-univalent electrolyte is described in the frame of the
primitive model with ionic charge e,, dielectric constant ¢, and
activity z,. For the level of subsequent approximations the hard
© core radius is not important. The polyelectrolyte chains are
- described in the frame of a modified continuum version of the
- Baumgirtner model* with the proper inclusion of the polyelec-
__ trolyte—ion interactions. In this framework the polyelectrolyte
i chains are described as freely jointed links of charge r per bead
of length /, with a total contour length equal to NI. The total
number of polymer chains is N. The electrolyte as well as the
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Figure 1. The model system. Two charged surfaces (surface charge
density o) at a separation 2a with a uni-univalent electrolyte and charged
polyelectrolyte chains (charge per bead 7) in between. Positive charges
are represented by filled circles and negatives ones by open circles. The
dielectric constant ¢ is supposed to be the same in all regions of the space.
Surfaces are impenetrable to ions as well as to the polyelectrolyte. Ions
are allowed to exchange with the bulk reservoir while polymers are in a
restricted equilibrium. The sign of the charges residing on the polymer
beads is opposite to the sign of the fixed charges on the bounding sur-
faces.

polyelectrolyte chains are confined between two impenetrable
surfaces separated by 2a and each carrying a surface charge
density o (presumed negative), Figure 1, of sign opposite to 7.
All the electrostatic interactions are mediated by a Coulomb
potential of the form u(r,r’) = 1/4weeo|r-r'|, being a solution of
the Poisson equation —ee,V2u(r,r’) = 8(r-r’). The configurational
part of the Hamiltonian for this model system can be written in
a discretized form

3kT
H=— ZZ(";H - l';)z + ‘/zZe,eju(r.-,rj) -
Y] i

‘/z?Nkekzu(r,r) + };e@e(n) (IL1)

In the above equation index p runs over all the polymer beads in
ath chain. Indices i and j run over all polymer beads of all the
chains (e; = 7), all anions (e; = —¢,) and all cations (e; = ¢,) while
index k can designate the polymer (N.e,2 = N72), the cations
(Ve = N.eg?) or the anions (Ne,2 = N,eg2). The third term
in the above expression merely removes the self-energy terms (i
= j) from the Hamiltonian. ¢.(r) is the external electrostatic
potential due to the charges on the surfaces. In what follows we
shall strictly use a continuum representation of the Gaussian chain
that amounts to the following formal replacement 3,3 (rp,; -
r5)? — ¥, J 4= (dR*(n)/dn)* dn, where R%(n) now stands for the
continuous coordinate of the nth bead along the ath polymeric
chain. In the above form of the Hamiltonian the possibility of
discrete surface charges as well as the presence of dielectric
discontinuities was disregarded since they rarely have any
qualitative effects.?®

In constructing the partition function of the system charac-
terized by the configurational Hamiltonian H we have to take into
account the fact that the ions are allowed to exchange with the
bulk reservoir as the separation between the surfaces varies.* As
for the polymeric chains, we assume that they are not in equi-
librium with the bulk phase?’ since the transversal diffusion rate
of a polymer trapped between two surfaces is quite small and the
overall situation is the one of restricted equilibrium.® The ap-
propriate partition function is therefore

® g-N.
= —_— —BH a N,
z=11 1 ~§o N j; o, DR (I12)
where a and ¢ stand for anions and cations, « is the index of
polymeric chains, ¢ is the renormalized value of the absolute
activity, { = zqe!/2«’(»), and B is the inverse thermal energy,
B! = kT. The integration measures in the above equation are
defined as: DR*(n) = d°R*(1) d°R*(2) ... d*R*(N?) and DNeer
= d&*r(1)d*r(2) ... d*r(IV,), where r(¥,) is the position vector of
the N;th anion or cation (s = a, c), respectively. Furthermore,
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we will disregard the possibility of polydispersity of polymeric
chains, thus setting N* = N.

We shall now proceed by introducing the Hubbard-Stratono-
vich transformation for the pair interactions, reducing them to
effective one-particle interactions with auxiliary field ¢ (see ref
4 for details)

exp[-1 /Zﬁziﬁzu(rhrj)] =
A(B) J:v De(r) exp[-1 /ZﬁiZJ¢(r,»)u"(r,-,r,~)¢(r,-) + iﬂ)i:w(r.-)]
(IL3)

where A(B) = (2x)V/*(det Bu\(r,r'))"/? and De(r) = lim, ... dp(r,)
do(r,) ... dg(r,). Though the Hubbard-Stratonovich transfor-
mation has been written in a discretized form it is straightforward
to get its continuum representation, amounting to a formal re-
placement 3",¢(r;)) — f #(r) d°r. The inverse of the pair inter-
action potential has been defined in a standard manner as
Su'e,)u(r ") & = 6(r—r”). Clearly for the Coulomb poten-
tial w'(r,r') = —eed(r-1') V2.

Since the Hubbard-Stratonovich transformatlon permlts us to
write the pair interactions in an effective one-particle form we
can perform the summations in eq II.2 explicitly remaining with
the following compact form of the partition function

E = A)eY™ I1 f f (Gy(R%R'N") d°Re P°R™=),  (IL4)

where U (V) = 1/,87* T, N*u(R*R®) is the electrostatic self-
energy of the polyelectrolyte chain. G4(R*R’*;N®) is obtained
in the following form

a R/a. Na) = RAN)=R* G __3_- X
GURR=N = [ DR(n) exp| -

N a 2
j(: (de:n)) dn + i(87) j;N" #(R*(n)) dn) (IL5)

and is clearly nothing but the Green’s function of the ath polymeric
chain in an external field.!® A representation of the polyelectrolyte
partition function similar to eq II.4 has already been derived by
Kholodenko and Beyerlein!* for a single polymeric chain. There
is, however, an important difference in the meaning of the ¢
averages in our formulation and theirs that we elucidate in what
follows. First of all, since the auxiliary field ¢(r) acts as an
effective external field we can make a transformation ¢ + i¢. —
¢ after the application of Hubbard—Stratonovich transform to eq
I1.2. Now, since u(r,r’) is a solution of the Poisson equation we
can use its inverse in a continuous version of eq I1.3 to obtain the
following form for the ¢ average in eq 11.4

.‘ f ePed(r) d3r‘

o= oo I & —— () X
exp-1/28ecs [ (Vo) ¢ po a7
= [ D). )etme

where the action in the last line of the above equation is nothing
but the Poisson—Boltzmann form of the free energy evaluated at
imaginary values of local potentials or, what amounts to the same
thing, at imaginary values of the charges, which we already en-
countered in the case of a confined Coulomb fluid:*

= Fypp(ie) =
Yoee f (Ve)? d°r - 2kT¢ f cos (Beot) dr +i ¢ g0 d'r
(IL7)

The form of the ¢ average used by Kholodenko and Beyerlein'*
is somewhat different from the above (aside from the o¢ term)

(IL6)
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since it corresponds to the polymer intcrsegment potentlal of the
screened Coulomb (Debye-Hiickel) type in 34, viz., uxp(r,r') ~
|r—r’|' exp(—«|r-r’]), set as a starting point for further analysis
in ref 14. Since for the screened Coulomb type potential one hag
ugp (1) ~ 8(r-r')(V? + %), one can conclude that the ¢ average
used by Kholodenko and Beyerlein would correspond exactly to
our form eq II.7 developed up to the second order in ¢.

We can now take into account all the above developments and
derive the final expression for the partition function eq I1.4

2 = A(B)elrV) 1;1 f Do(r) &P X
(F S o e
= @ [ Do(retss

where the action in the above equation can be put into the form

S,=H,- kTN In ( S fe.®r:M ¢'R dsR') =
- kT N In Q(V) (ILY)

since all the integrals over G,(R*R’*;N°) are equal. A related
representation of the partition function in the case of excluded
volume interactions has been derived frist by Edwards (see ref
16 for details).

In what follows we shall be mainly interested in the free energy
and its properties therefore the above form is a right starting point.
Should we want to approximate the Green’s function itself or its
moments, the (R,R’) integrations in eq I1.9 would be spurious.
This concludes our formal developments.

(IL8)

III. Perturbation Expansion and the Self-Consistent-Field
Theory

Clearly the partition function eq I1.8 cannot be evaluated ex-
plicitly since the action in the functional integral is highly non-
Gaussian. However, if the local potential ¢(r) is sufficiently small,
corresponding to vanishing electrostatic coupling (i.e., charges),
we can proceed by constructing a perturbation expansion of the
action S, around a state characterized by the “bare” Green’s
function Go(R,R;N) = G4=o(R,R’;N) that is a solution of

[3& - Lok ]co(n,n';m = 5(N) SR-R)  (IIL1)

This was also the path taken by Edwards in his analysis of the
excluded volume effect (see ref 16). We shall denote the statistical
sum corresponding to the bare Green’s function as

oM = [ [ G,RR:N) 'R @R’

Taking now the first two terms in the perturbation expansion of
G,(R,R’;N) with respect to ¢(R) we can derive the following
identity

o) = Qo1 + i6r J R polR) SR -

(87 f d°R E°R’ $(R)Z(R,R)$(R)) + 0(¢3)] (I1L.3)
where we introduced the local density of the polymeric segments
f ferar [ Yan Go(R",R;N-n)Go(R.R";n)

f f d°R &R’ Go(R,R";:N)

(111.2)

po(R) =

(11L4)

It is clearly appropriately normalized since fd’R po(R) = N.
Furthermore

Zo(RR) =
[f f d°R” &R f dn f dn’ Go(R” R;N-n) X

Go(R.R';m-n") Go(R'R”m) | / { fereR GRRN
(IIL5)
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',1‘0 this order in the perturbation expansion we therefore obtain
for the action eq I1.9 the following approximate form

S, = —N In QM) + Yaeeo [ (V)2 &'r -
Q‘r 1(Ber)’ [ $6) dr + i b0 d'r — iNBr [ & polr) 4(x) -
NEDf [ drdr sIZorr) - hoor) po®)]o(r)
(11L.6)

smcc our problem has distinct plane-parallel geometry it is helpful
to introduce the Fourier—Bessel transform of all the quantities
- depending on R as, e.g., in the case of the Green’s function that

feads to
Go(R,R;N) = f 2n)? GQ(z,z’;N)e"Q(""") (I11.7)

where p = (x) is the two-dimensional radius vector perpendicular
to the transverse coordinate. This representation, together with
¢q I11.1, leads to the following expression for the zero-order Green’s
function .

- ' A
Go(z,2°N) = Z%jcos ((Zj + l);—:) cos ((2} + 1)%)e EAQIN
: (111.8)

where the eigenvalues are determined from the vanishing of the
Green’s function at the hard walls located at z = %4, thus E,(Q)
= (12/6)[7*/(2a)*](2j + 1)* + (1*/6)Q% The vanishing of the
Green’s function at the hard boundaries is a consequence of the
fact that the polymeric chains cannot penetrate the bounding
surfaces. Furthermore, in the subsequent discussion we shall limit
ourselves to the thermodynamic limit defined by the following
limiting procedure, N — «,.§ —  (in this order) with N/S =
constant, where S is the area of the bounding surfaces. The order
of both limits is important since it prevents trapping of the
polymeric chain in the vicinity of a single surface. This signifies
that we shall consider only the j = 0 term in the expansion of eq
III.4. Furthermore, the R integrations involving the Green’s
function in the previous formulas are reduced, via the ansatz eq
II1.7 to z integrations of the Q = 0 term.

Since the action in the functional integral eq I1.8 is now of a
general quadratic form derived explicitly in eq III.6, we can
perform all the ¢ integrations and remain with the following form
of the surface free energy density

= -% In £
1B(NT)?
=W In QM) + 5 “o’ x
B(N70o)
S o2 8022 pola) dz dz - == x
-a —-a ox
+a cosh (xz’)
- polz m + - coth (xa) (II1.9)

where we have introduced what turns out to be a Green’s function
of the linearized Debye—Hiickel equation with appropriate
boundary conditions

cosh «k(z—a) cosh x(z’ + a)
 sinh 2«a

g(z2) = ; 2>z

_ cosh x(z + a) cosh x(z’' — a)
B x sinh 2xa

; z<z’ (IIL10)
« is the standard inverse Debye screening length for a uni-univalent
electrolyte. In order to get an explicit dependence of F on the
Intersurface separation we have to evaluate the integrals in eq II1.9
by taking into account the definition of the local polymer segment
density eq I11.4 in the thermodynamlc limit where Gy(z,z%N) is
approximated by the first term in the expansion eq II1.8. This
leads to the following form of the surface free energy density
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F = kaF(Jv—) +1 ’—Z(Jv%)zf@ -

2

(2a)2 4 € 2a
70| N1 (w/a)? 1 &2
A YZAS Il A
eeoK(‘NS)Ka @+ (x/a)? 2 e °°th (xa) (IIL.11)

where f(«a) is a slowly varying function of its argument assuming
values on the interval [3/,,1] for @ = [«,0]. The structure of the
free energy density eq III.11 is quite transparent since each term
corresponds to a different interaction mechanism. The first term
is the entropic repulsive contribution due to the exclusion of all
configurations that would violate the impenetrability of the
bounding surfaces to the polymeric chains. The last term, on the
other hand, is the standard Debye—Hiickel electrostatic free energy
density for a confined uni-univalent salt of inverse Debye length
k. The other two terms represent different couplings between
electrostatic and steric interactions for the polymeric chains. Thus
the second term is the electrostatic interaction energy of the
polymer self-interaction while the third term is the electrostatic
polymer-wall interaction. The free energy eq IIL.11 gives the first,
though very approximate, picture of the forces between charged
surfaces in the presence of charged polymeric chains and inter-
vening electrolyte.

What is already apparent at this approximation level is that
the electrostatic polymer—wall interactions lead to an attractive
component (third term in eq III.11) in the expression for total
force (derivative of the surface free energy density with respect
to the intersurface separation) between charged boundaries. Due
to the limitations inherent in the derivation of eq III.11 its validity
is restricted to the case of small o, 7 and it would be difficult at
this point to assess which term of the free energy dominates at
a specified separation.

However, a far better approximation can be obtained if changes
in the local polymer density distribution, that are due to the
electrostatic interactions between the beads and the surfaces are
appropriately taken into account. In order to include the cor-
rections in the density distribution of ions as well as in the local
segment density of polyelectrolyte chains, we have to employ a
variant of the self-consistent-field method amply used in the
treatment of excluded volume interactions in polymers.!¢

There are several variants of the SCF method!® and we shall
consistently use only one of them that will provide a good ap-
proximation for the free energy of the system that we want to
analyze. This leads to the consideration of stationary points of
the action eq I1.9 (see ref 17 for details)

5S,/8(r) = (IIL12)

We shall not write down this functional derivative explicitely at
this stage. In order to evaluate it one needs the following identity
that can be derived from a differential equation correspondmg
to eq IL.S, viz. .

3 ;(r) ( f fe.®R:N @R d3R’) iBro,(r)

where p,(r) is the polymer segment density evaluated at point r
defined in analogy with eq II1.4.

The functional derivative eq II11.12 now decouples into two
terms: a volume contribution that amounts to a modified Pois-
son—Boltzmann equation and a surface contribution in a form of
a boundary condition, expressing the electroneutrality of the
system. It is straightforward to see that the boundary condition
demands that the stationary point ¢ be pure imaginary. Making
thus the substitution ¢ — i¢ one remains with the following
stationary point equations

€6gV2¢(r) = 2{e, sinh (Bege(r)) — TN p,(r)
) '

—€T— =0

an

(IIL.13)

(I11.14)

(17) Rivers, R. J. Path Integral Methods in Quantum Field Theory;
Cambridge University Press: Cambridge, U.K., 1987, Chapter S.
(18) Freed, K. F. J. Chem. Phys. 1971, 55, 3910.
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where n is the local normal of the boundary surfaces. Furthermore,
the polymer segment density is obtained from eq II1.4 with the
Green’s function satisfying

2 Lo s Grem ]G¢(R,R’;N) = 5(R-R) 3(V)

N 6
(IIL.15)

Relations eqs I11.14 to III.15 represent the self-consistent-field
equations'® for a polyelectrolyte immersed in an electrolyte so-
lution. They are a natural generalization of a set of SCF equations
derived by Kholodenko and Beyerlein'* in the context of a single
polyelectrolyte chain in the bulk. Setting aside the presence of
additional electrolyte the SCF equations derived above relate also
to the polyelectrolyte Poisson-Boltzmann approximation (PPB),
set forth by Akesson, Woodward, and Jonsson.!> The major
difference with respect to this work is in the treatment of the
statistical average over the polyelectrolyte configurations, which
is done explicitly in our case, eqs II1.14 and III.15, in contrast
to a seminumerical procedure exploited in ref 12. In order to avoid
confusion we shall refer to our approximation scheme as the
self-consistent-field Poisson—Boltzmann approximation for po-
lyelectrolytes (SCF-PBP).

IV. The SCF Equations in the Form of a Modified
Poisson—Boltzmann Equation

The main conclusions of the rather formal developments of the
previous sections can be restated also on the basis of purely physical
arguments that are standardly used in different derivations of the
Poisson—Boltzmann equations.! Since the only mobile charged
species in our model system are anions, cations, and charged
polymeric chains, the local Poisson equation can be straightfor-
wardly written as

e«V?(r) = -p(r) = ~Tpi(r) av.n

where ¢(r) is the local mean electrostatic potential at point r, while
p(r) is the local total charge density, composed of the local charge
density of cations, anions, and polymeric chains (represented by
index i = cations, anions, polymeric chains). With the Boltzmann
ansatz one has for the salt ions p;(r) = F{epetf*®, if we write
the bulk charge density as {e,. Introducing this form of the local
charge density into the Poisson equation, eq IV.1, we remain with
the standard form of the Poisson—Boltzmann equation. For
polymers, however, the local charge density can be written as p;(r)
= 7N (e?®) if the charge per bead is = and if there are N
chains between the charged surfaces. The averaging (...) has to
be done over all the internal degrees of freedom (corresponding
to the coordinates of the polymer beads) of a single polymeric
chain. Inserting now all the local charge densities (cationic,
anionic, and polymeric) into the Poisson equation, we are led
exactly to the first equation of eqs II1.14, i.e.

egV2p(r) = {epef?® — feeBeod®) — tNp (r) (IV.2)
if we set
py(r) = (ePre) (Iv.3)

The question now remains of how to represent p,(r) explicitly as
a function of the local mean potential ¢(r). It is a well-known
result of the polymer theory® that the polymer density can be
expressed with the help of the polymer Green’s function G(R,R’;N),
see eq I11.4, which gives the probability that a chain starting at
R has the last bead N at R’. Since the mean potential acts as an
external field on each bead of the polymer, the Green’s function
has to satisfy eq II1.15. Therefore, the main difference between
an ion and a charged polymeric chain is that the charge density
of the latter cannot be written explicitly as a function of the mean
(electrostatic) potential, but can be obtained only implicitly
through the Green’s function of the polymer in an external (mean)
field.

The arguments given above are purely heuristic but are well
substantiated by the detailed formal developments of the previous
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two sections. The conclusion would therefore be that the modifieq
Poisson—Boltzmann equation eq II1.14 can also be deriveq by
plausible physical arguments, leading to the same basic equationg
as a more thorough formal analysis.

As already stated, we shall limit ourselves to the consideratioy
of the thermodynamic limit that is defined by letting the number
of beads on each chain, N, and the total surface area of the
boundary surfaces, S, go to infinity in such a way that no chain
can remain trapped in the vicinity of only one surface. This can
be accomplished by letting first N — , followed by S — o, wity
N/S = constant. The ground-state dominance ansatz N — o thy,
guarantees that no antisymmetric solutions for the polymer seg-
ment distribution have to be taken into account (see ref 36).

In the ground-state dominance ansatz'’ the polymer Green's
function assumes the form

Gy(RR':N) = Gy(2,2'N) =~ Y(z) Y(2)eExV  (Iv.4)

where |Ey| is the lowest lying energy eigenvalue. Configurations
with negative Ey correspond to a case where the polyelectrolyte
chain-has at least one surface-bound state. In this limit clearly
we can eliminate the dependence of the Green’s function on the
transverse coordinates, thus obtaining

0@ = /S with :‘V(z) dz=1  (vs)

With these simplifications eqs II1.14 and III.15 are reduced
to the following set of two coupled nonlinear equations for the
local average potential ¢(z) and the polymer “density field” y(z)

B dy
- — 4 - =
6 32t En—Bro =0
d’¢ . N
“OF — 2{e, sinh (Beyd) + TN Enpz =0 (IvV.6)
V4

The impenetrability of the surfaces to polymer beads is now
reduced to the boundary condition y(z=za) = 0, while the ap-
propriate boundary condition for the electrostatic potential can
be deduced form eq I11.14. Clearly in the absence of polymeric
chains the above two equations reduce to the standard Poisson-
Boltzmann equation for a uni-univalent electrolyte. With the
polymeric chains present, we can view eqs IV.6 as a modified
Poisson-Boltzmann equation, where the dependence of the
polymeric charge density on the mean electrostatic potential has
to be determined self-consistently, via the dependence of the
polymer “density field” y(r) on the electrostatic potential.

We are now ready to evaluate the surface free energy density
defined as eq II1.9

kT ., _ N Frp
=-3 ln,..—kT.NSEN+ 5 av.mn

where Fpp is the standard Poisson-Boltzmann free energy of a
nonhomogeneous electrolyte. Taking into account eqs IV.6 with -
the appropriate boundary conditions we are led to the following
explicit form of the surface free energy density

+a N [2 +a dw 2
9=L f(2),6(2)) dz‘=kT.N§[g‘[a (21?) dz +

a +a d 2
ﬁ‘rf_: oY dz]—%eeof (Ed’) dz -
%#TY | " cosh (Beyd) dz - 26(z=%a)o (IV.8)

where we introduced the local nonequilibrium free energy density
S as a functional of ¥(z) and ¢(z). The form of the surface free
energy density was written down in order to derive the variati
principle for which eqs IV.6 are just the Euler-Lagrange equations.
It clearly follows from the above developments that the quantity
that has to be minimized is simply

(19) de Gennes, P.-G. Scaling Concepts in Polymer Physics; Cornell
University Press: Ithaca, NY, 1979.
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_where u is a Lagrange multiplier that keeps the normalization

_ of the polymer segment density fixed (u = kTN (N/S)Ey). After
"deriving the free energy density that leads to correct SCF equations

#we can now apply the argument of de Gennes*® and show that

Zthe pressure acting between the two bounding surfaces located
Lt z = +a can be reduced to

= ~($(2)¥(2)) = kTN (N/S)Epb(2))at =0 (Iv.10)

FInserting now the definition of f{¢,¥) eq IV.8 we obtain for the
% pressure

‘ N B[ d¥
@ = 2kT¢ cosh (Beyd(z=0)) — kTN Z = v— (IV.11)
56 de z=0
There are different ways to express the identity eq IV.11, most
notably by the application of the first imtegral of eqs IV.6 that
can be derived straightforwardly in the-form

1 (de)

i U A 2kT¢ cosh (Begd) -

Nef () 1a ]
kT(NE)E[(E;) -1 E\DZ] = const (IV.12)

and leads to the following equation for the pressure in the form
of a “contact theorem”

2
P = 2kT¢ cosh (ﬂeodj(z:a)) - %30 +

It represents an appropriate generalization of the “contact
theorem” amply used in the Poisson—Boltzmann theory of inter-
acting double layers®! to the case with added polyelectrolyte chains.
The first two terms of the above equation are clearly identical
with the standard Poisson—Boltzmann contact theorem, while the
last term embodies the equilibrium of forces due to the presence
of polymeric chains.

This concludes the formal developments as connected with the
application of the SCF ansatz to the present problem.

V. Numerical Solution of the SCF Equations

In order to solve egs IV.6 it is advantageous to introduce di-
mensionless quantities and then to assess on which parameters
the final solution of the SCF equations depends. Without any
loss in generality of the arguments we shall assume in what follows
that r = ¢,. Furthermore, we shall assume that the fixed surface
charges are of negative sign. In this case it is straightforward
to deduce that the solution of eqs IV.6 is governed by the value
of dimensionless separation w, = ka, where « is the inverse Debye
screening length for a one-one electrolyte, viz., k2 = 2{Bey?/ ¢,
the value of the dimensionless surface charge I' = Seya/ ok, the
value of the electrostatic coupling between the polyelectrolyte chain
density and the mean total charge density A = (8ey?/eegx) N (N/S)
and the product /. The solution of the basic set of SCF equations
is quite complicated in the space defined by these parameters and
we can only provide some more interesting sections of this space
defined by assuming constant values for most of these parameters.

~ In dimensionless form the SCF equations egs IV.6 can be written
as

d2u
— —sinhu+ A2 =0
dw? v

&y 6
— + —(Ex-u)y =0
G En

du

(—i;(w = +w;) = ¥T (v.1)
where w = xz and u = Seyo.

In what follows we shall be mostly concerned with the eigen-
energy E,, the dimensionless pressure P* = ((Be;)?/ eeox®) P, and
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Figure 2. Energy eigenvalue, Ey (bold curve), obtained from the solution
of egs V.1 with logarithm of the dimensionless pressure, log P* (dashed
curve), obtained from eq IV.11, as functions of the dimensionless inter-
surface separation wy = xa. The values of the dimensionless coupling
constants are I' = 5.4, A = 1.0, x/ = 1.0. At these values of the param-
eters the energy eigenvalue clearly displays the transition of the polymers
from a bulk state with positive E to a surface-bound configuration with
negative E. At large w, the pressure displays an exponential dependence
on the intersurface spacing just as in the case of no added polyelectro-
lytes. The slight kink (more clearly seen in Figure 6a) in the log 2P*
curve observed at wy ~ 2.0 is already due to the bridging attraction
caused by the soft electrostatic adsorption of the polyelectrolyte chains
to the charged surfaces. The inset represents the position of the maxi-
mum in the density distribution of the polymers as a function of wy. The
displacement of the maximum from the middle of the intersurface region
toward the boundaries measures the strength of the bridging.

different charge density profiles that we shall define later on.
Though the two expressions derived for pressure eqs IV.11 and
IV.13 are completely equivalent, their numerical accuracy is
different, especially in the regime of large w, where eq IV.11 does
yield far better accuracy than the latter one.

In order to get a definite reference frame for the values of the
parameters specified above, we shall use a value T' =~ 5.4 for
specifying the magnitude of the dimensionless surface charge that
corresponds to the surface charge density of one electron charge
per 2 nm? and «' = 1.2 nm, obtained from a recent experiment.>
Also by setting arbitrarily A = 1.0 and «/ = 1.0 we get the energy
eigenvalue Ey and the dimensionless pressure P* as a function
of dimensionless separation w, = «a in the form presented in Figure
2. Itis evident that the profile of the energy eigenvalue is not
monotonic and has a pronounced minimum at wy = 0.7, saturating
for larger values of the dimensionless separation. For most of the
intersurface separations Ey is negative amounting to the statement
that the polymers are in a surface-bound state. The logarithm
of dimensionless pressure shows exponential dependence at large
intersurface separations with an effective value of the surface
charge. There is a very slight kink (it is much more clearly
discernible in Figure 6a) in the log P* curve for separations w,
= 2.0 that stems from the attraction between surfaces promoted
by the bridging of the polymeric chains from one surface to the
other one. This statement is derived from observation of the
polymer density distribution between the two impenetrable,
charged walls, Figure 3, defined as p(w) ~ ¢2(w). It shows how
the polymers undergo a transition from configurations where the
bulk of the polymeric chains is concentrated in the middle of the
intersurface region to the one where most of the polymeric chains
are confined to regions close to the bounding surfaces on increase
of the dimensionless separation. In the latter situation those parts
of the polymeric chains that are not “trapped” in the vicinity of
the charged boundaries act as bridges, spanning the intersurface
region and pulling them toward each other. It will become clear
later on (section VI) that the bridging attraction is basically elastic
in origin. The bridging promoted by electrostatic interactions in
our model system is therefore of the same type as the one described
by Akesson et al. for a situation where polymers are the only
charged species in the system.

The transition of the polymer density distribution from a un-
imodal to a bimodal (bridging) form is seen even more clearly
if we plot the position of the density maximum as a function of
intersurface separation (see inset Figure 2). The transition occurs
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Figure 3. Polymer density profile p,(w) ~ y2(w) as a function of reduced
transverse coordinate w/w, for different values of w,. The values of the
dimensionless coupling constants are the same as in Figure 2. Curve a
corresponds to wy = 0.5 and curve g to wy = 3.5, the rest follow in steps
of Awy = 0.5. One can clearly distinguish the progressive strengthening
of the bridging effect as the separation gets larger since more and more
of the polymer segments are crowded in the vicinity of the boundary
surfaces. The transition from the monomodal to the bimodal form of the
density distribution is clearly seen on increase of the intersurface sepa-

ration.
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Figure 4. Changes in the position of the maximum of the density dis-
tribution curve, wy,,, as a function of the intersurface separation w, for
different values of T'. A and «/ are kept constant at 1.0. The values of
I for different curves are (a) 55.0, (b) 22.0, (c) 11.0, (d) 5.4, (e) 2.7,
(f) 1.3, (g) 0.6, (h) 0.3, (i) = 0.15. The progressive shift in the mono-
modal-bimodal transition to smaller values of w, observed on increase
of T testifies to the electrostatic nature of this transition.

at a point determined by the value of T', A, and «/ with a clear
tendency that for larger values of the electrostatic coupling the
transition moves towards smaller value of intersurface spacings
(Figure 4). The changes in the character of the polymer density
distribution have pronounced effects on the profile of the total
charge density in the system, Figure 5, promoting the accumulation
of positive charge close to the surface if the polymers have a
bimodal distribution, and conversely promoting negative charge
accumulation if the distribution of the polymeric chains is mo-
nomodal. The monomodal-bimodal transition of the polymer
segment density is closely related to the bound—free transition of
the polymeric chain first analyzed by Wiegel'! in the case of a
single bounding surface.

Without the presence of charged polymers, the changes in I’
would basically only displace log P* curve upwards or downwards.
With the polymers added and A kept at a constant value A = 1.0,
the changes are not only quantitative but also qualitative, Figure
6a. One observes that the slight kirik at wy =~ 2.0~3.0 becomes
more and more pronounced as dimensionless surface charge is
changed from I' = 5.0 to T = 3.0. This we can interpret as due
to the shift in the equilibrium of two force mechanisms. The first
one is the electrostatic repulsion between the two charged surfaces
and the second one is an attraction due to the bridging of the
polymeric chains between the surfaces. As I'is diminished the

Ilﬂ(%o-]) 10

Figure 5. Dimensionless total space charge density pr = —sinh  +

as a function of reduced transverse coordinate ((w/w) — 1) for differen
values of wy. Only half of the intersurface space is shown. Curve ¢
corresponds to wy = 1.0, curve b to wy = 2.0, and curve a to Wo = 5.0,
The values of the dimensiofiless coupling constants are the same asin
Figure 2. The buildup of positive charge density close to the wall is seen
if the polymer density is bimodal in form. Otherwise the excess of
positive (mostly polymeric) charges is observed to move toward the
middle of the intersurface region.
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Figure 6. (a, top) Logarithm of the pressure, log P*, from eq IV.11 as
a function of w, for different values of I". A and «/ are fixed at the same
values as in Figure 2. Curve e corresponds to I' = 5.0 and the rest follow
in steps of 1.0 so that curve a corresponds to I' = 1.0. As I is diminished
the kink observed in Figure 2 at wy ~ 2.0 slowly develops into the be-
ginning of an attractive region that is already fully developed for I' = 2.0
and extends from wy ~ 2.0 onwards. (b, bottom) Same as Figure 68
except that P* is plotted instead of the log. The attractive region,
corresponding to negative pressures, is now more clearly seen. Curvea
corresponds to smallest I'. One should notice that the depth of the
attractive minimum is not a monotonic function of I'. At large wy, even
if it is attractive, the pressure still decays approximately exponentially
though with a different decay length.

electrostatic repulsion is reduced and the bridging effects tend
to become dominant as is clearly seen from the fact that reducing
T even further (I' < 3.0) eventually leads to net attractive in-
teractions at sufficiently large intersurface spacings. This effect
can be observed even more directly if instead of log P* we switch
our attention to P* itself (Figure 6b). The pressure switch not
only signs on going from large to small T, but also develops 8
minimum at intermediate values of the intersurface spacings. For,
even if the bridging effect is dominating at large intersurface
spacings, the entropic repulsion, stemming from the exclusion of
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7. Variation of pressure (10°P*) and energy eigenvalue Ey (inset)
as functions of T' for wy = 5.0. The other parameters are the same as
in Figure 2. The pressure is clearly a nonmonotonic function of I'. It
- develops a minimum for small values of T' (see text) and then saturates.
This saturation value in the limit of wy — = is the same as in the pure
PB case since for very large T the presence of charged polymers is ir-
relevant. The eigenenergy conversely displays a monotonic dependence
on I' starting from positive and passing to negative values at a finite value
of T

polymeric configurations at the impenetrable surfaces, does lead
to a dominant repulsion at small intersurface spacings that is
decoupled from all the electrostatic effects that prevail at larger
values of w,. These statements can be given additional support
if we observe the continuous changes in the net pressure as I' is
varied while the separation is kept constant, Figure 7. At small
values of T' (50.4) the pressure is repulsive due to the fact that
mobile ions alone have to effect an efficient screening of the
polymer charges. At larger values of T' the effects of bridging
in turn become dominant leading to a net attraction between the
charged surfaces. This trend, however, is reversed as soon as the
charges on the surfaces become large enough for the direct
electrostatic repulsion between the surfaces to become dominant.
On increasing T even further, a saturation of the repulsive pressure
is reached at a value close to the one obtained without the added
polymers. This nonmonotonic variation of the pressure at a
constant value of the intersurface separation can be contrasted
to the concurrent variation of Ey. Apparently the changes in
surface charge merely promote the unbound to surface-bound
transition at a certain critical value of I" (=1.5). After that the
cigenenergy remains negative but eventually saturates for large
values of I'. While the net pressure is therefore a result of opposing
tendencies, the eigenvalue merely reflects the tendency of elec-
trostatic attraction to softly bind the polymers to the surfaces.

The section of the parameter space considered next is defined
by keeping T fixed while varying A, Figure 8a. In this way the
clectrostatic coupling between the polymeric and other mobile
charges is regulated. For small values of A, log P* approaches
the standard Poisson—Boltzmann pressure profile with basically
exponential dependence on the intersurface separation. In this
regime the pressure is repulsive for all values of intersurface
spacings. For larger values of A (1.0 < A <2.0) a kink is again
- observed in the log P* curve that eventually develops into a region

of wy values, characterized by net attractive forces. Outside this

region the forces turn again repulsive but for different reasons.
- For small separations the steric exclusion of polymer configurations
- Benerates an entropic repulsion between the surfaces. For large
& Separations, however, the direct screened electrostatic repulsion
@ « between charges on the opposite surfaces outweighs the bridging
£ attraction stemming from the soft absorption of the same poly-
% meric chain to both surfaces. Increasing A even further finally
4 leads to a total domination of the bndgmg attraction for any

- regime of intersurface separations except in the limit wo—> 0 where
$.entropically driven steric repulsion becomes once again the dom-
inant source of the intersurface forces. The most mterestmg
%feature of the force curve revealed by the above examplcs isa
4 Testricted region of the parameter space where (on increasing wy)
“ the pressure goes through the sequence repulsive—attractive—re-
lmlswe (Flgure 8b). This leads to a conclusion that a secondary
#minimum in the force curve exists for this system even if the van
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Figure 8. (a, top) Logarithm of the pressure, log 2*, from eq IV.11 as
a function of wy for different values of A. I' and «/ are fixed at the same
values as in Figure 2. Curve f corresponds to A = 0 and the rest follow
in steps of 1.0 so that curve a corresponds to A = 5.0. The log P* curve
for A = 0 shows the same exponential behavior as in the standard PB
theory. As the electrostatic coupling of polymeric chains increases, a
slight kink in the force curve slowly develops into an attractive region.
There is, however, a window in A values where the pressure after be-
coming attractive reverts again to repulsive for large values of w,. It
shows the same exponential dependence in this regime as in the case A
= 0, but the preexponential factor is diminished. For A = 5.0 the pressure
remains attractive for all, except the very small values of the intersurface
spacing. (b, bottom) Same as Figure 8a except that ?* is plotted instead
of the log. The attractive region, corresponding to negative pressures,
is now more clearly seen. Curve a corresponds to largest A. The force
curve c corresponding to A = 3.0 now displays in the clearest fashion the
sequence repulsion-attraction—repulsion as wy goes from small to large
values.

der Waals—Lifshitz forces are not incorporated into the balance
of forces. The behavior of the pressure as a function of A at a
particular value of wy, Figure 9, supports the notion that changes
in the electrostatic coupling merely affect the magnitude of the
electrostatic bridging that lies at the origin of the polymer-pro-
moted attraction between two equally charged surfaces. The
variation of the eigenenergy, however, is quite different in this
case, inset to Figure 9. Apparently large A does not only signify
large electrostatic interactions between the polymer and the
surfaces, promoting bridging, but also accumulation of the polymer
material between the two surfaces, which should finally lead to
desorption. The increase in A with I" kept fixed would therefore
lead to a situation where for almost any w, the entropic exclusion
of the polymers at the impenetrable boundaries would be the
overwhelmingly largest contribution to the forces between the
surfaces. This regime is, however, not reached by the values of
A included in Figure 9.

Finally the variation in «/, Figure 10, merely changes the range
of electrostatic interactions and at complete screening (x/ » 1),
all the electrostatic effects, including the attraction promoted by
electrostatic bridging, are simply wiped out. The system behaves
as a solution of uncharged, sterically confined polymers. The other
extreme of very small ionic screening of the electrostatic inter-
actions would displace the whole system toward the case where
the electrostatic interactions would effectively exist only between
fixed surface charges and charged polymers. This system was
analyzed before?° and will be addressed again in the next section.

(20) Podgornik, R. J. Phys. Chem., in press.
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Figure 9. Variation of pressure (10°P*) and scaled energy eigenvalue
AEy (inset) as functions of A for wy = 5.0. The other parameters are the
same as in Figure 2. Comparison with Figure 7 shows that the roles of
P* and E, are now reversed, since pressure remains a monotonic function
of A, going from repulsion to attraction at wy, = 5.0. The energy eigen-
value reaches a minimum with a negative value and then starts growing
again.
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Figure 10. Energy eigenvalue, Ey (upper graph), and logarithm of the
pressure, log P* (lower graph), as functions of dimensionless separation
for different values of x/. All the other parameters are the same as in
Figure 2. The upper (dotted) curves on both graphs correspond «/ = 10.0,
the medium (dashed) ones to x/ = 5.0, and the lower (full) ones to x/ =
1.0. The value of the product «/ controls the overall range of the elec-
trostatic interactions, and for x/ » 1.0 they are effectively screened so
that the force curve as well as the eigenenergy approach the confined
neutral polymers values.

VI. Approximate Analytical Solutions for Certain Limiting
Cases

Numerical solutions of the previous section gave some revealing
insights into the complexity of the problem. Though one could
stop at that, we believe it is equally important to have some
asymptotic formulas that would embody these insights in analytical
terms. There are just two cases for which analytical computations
are feasible and we shall dwell on them in some detail.

The first limiting case will be defined by demanding that A «
1 while I should be small enough so that a linearization of eq V.1
is feasible. In this case we can make the approximation sinh u
~ u in eq V.1 and assume that the term Ay? gives a negligible
contribution to the total charge density. This is an approximation
originally proposed by Wiegel;!! thus we referred to it as the
Wiegel approximation?® and used it in the context of a polymer
in contact with a single charged wall. Also, the same approxi-
mation has been exploited by van Opheusden® to analyze the same
system but in the case of two confining charged surfaces. Though
the equations derived below in the frame of the Wiegel approx-
imation are directly related to those.derived by van Opheusden,
there are several important differences in their subsequent
treatment. First of all we use the Wiegel approximation to
generate certain approximative but analytical solutions. We do
not solve the basic equations thus obtained numerically since this
was already done for the complete set of the SCF equations that
have a much larger range of validity. Also we do not analyze the
finite size effects, as was done by van Opheusden, since our

Y

primary aim is to obtain the interaction pressure and the polymer
density distribution in the thermodynamic limit.

The basic equation that we have to solve in this particular case
(provided that we use the Wiegel approximation in the simplj.
fication of eqs V.1) reduces to

dy B ;
Tt et Fosh 2w =0 with Ylw=twg) =g
(VL1

where we introduced several dimensionless variables: ¢, =
[24/(xD?*)En, w = kz/2, wy = ka/2, and

B_24 T _ k’
sinh xa

Clearly eq VL1 is nothing but the modified Mathieu equation,
the solution of which appropriate for the case at hand can be
written as?!? -

ey

n=+w &

VW) = Tey(hw) ~ 3 (-1, pn(h cosh w)

n=-o

(V12)

where we basically follow the notation of Morse and Feshbach 2!
(In what follows we shall address the general issues pertaining
to the solutions of the modified Mathieu equation only inasmuch
as they bear relevance to our discussion. We direct the reader
to one of the standard references for further details.??) J,(x) is
the Bessel function of order m and a{” are the coefficients entering
the recursion relations when the solution eq V1.2 is inserted into
eq VL1. The order of the solution, s, is obtained by the application
of the boundary condition. The solution of the boundary condition
is indeed quite complex except in the limit of large separations
where h < 1 and?!

af]/af) = O(h?)

) 2 4

Ey=- YR + O(h%)

The boundary condition ¥/(wy) = 0 in this case assumes the fol-
lowing simplified form valid to the order O(h?)

12
24 xa
Js( 6‘7)—51-‘ coth (7)] ) =0

The ground-state dominance ansatz now demands that among all
the solutions of the above equation with s > 0 we should pick the
one corresponding to the largest value of s, therefore, the first zero
of a Bessel function with the largest value of s.

The first general statement we can now make is that solutions
of the boundary condition eq V1.4 exist for real s only if [24/
(xD)]T" coth(xa/2)]"/? 2 ji,,, where jo, is the first zero of the zeroth
Bessel function. If this is the case then by eq V1.3 the energy
eigenvalue is negative, indicating the existence of a surface-
state. By using an asymptotic form for the zeros of J,(x) valid
for large values of s5,%° we arrive at the following approximate
relation

(x02(2)2 u4 (xa) AT
EN = - 24 \x (KI)ZI‘ coth 2 - T (VI.S)
valid for large values of |Ep|.

It is clear from the above analysis that, in the limit of wp —

=, which corresponds to the case analyzed by Wiegel,!! we also
recover his results, viz., for [24/(x/)’T']"/2 > j,, the polyelectrolyte

(VL3)

(VL4)

(21) Morse, P. M.; Feshbach, H. Methods of Theoretical Physics;
McGraw-Hill: New York, 1953; p 556. T

(22) McLachlan, N. W. Theory and Application of Mathieu Functions,
Clarendon Press: Oxford, UK., 1947. Campbell, R. Theorie Generale de
L’Equation de Mathieu; Masson et Cie.: Paris, 1955. Erdelyi, A.; Magnus,
M.; Oberhettinger, F.; Tricomi, F. G. Higher Transcendental Functions;
McGraw-Hill: New York, 1955; Vol. III, p 91.

(23) Abramowitz, M.; Stegun, 1. A. Handbook of Mathematical Func-
tions; Dover: New York, 1968.
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5 chains are surface-bound due to the electrostatic attraction between
the positive charges residing on the polymer beads and the negative
ﬁxed charges on the surfaces. Furthermore, since coth is a de-

ing function of its argument, we can deduce that if we start
swith [[24/ (xD)2IT]Y/2 > jo, for wy — = the energy eigenvalue will
remain negative also for finite (xa).

Though we obtained an explicit analytical solution in the lim-
iting case I, A K 1, its analysis does not seem to be of a lower
complexity than the original numerical problem analyzed in the

evious section. A clear analytical insight, however, is possible
if we delimit ourselves to not too large separations. In this case
the solution of eq VI.1 can be approached through the WKBJ
ansatz or equivalently the Horn—Jeffreys method, as it is called
in the context of the modified Mathieu equation.??

If we introduce an auxiliary function x(w) = (ey + (h%/2) cosh
(2w)), the WKBJ solution of the modified Mathieu equation can
be written as

Y(w) ~ x(w)™'/* exp(:l:ij‘w)(’/2 dw); x>0 -

¥ow) ~ (xoyexpls [0 aw) x <0 (VL)
The above two forms of the WKBJ solution represent two different
branches that separate the whole space of the WKBJ solutions.
into two distinct regions characterized by the sign of x(w). One
should note here that the sign of x(w) is not directly related to
the sign of ¢y.

Starting with the branch corresponding to x(w) > 0, or
equivalently |ep] < h%/2, a WKBJ solution displaying an even
symmetry has the form?2

-1/4
Y(w) ~ (GN + — cosh (2w)) ( f [eN

3 cosh (ZW)] dw ) (VL)

while the boundary condition eq VI.1 reduces to the following
expression determining the lowest lying energy eigenvalue ey

wo h2 1/2 x
f [eN + 2 cosh (2w)] aw=2 (VI§)
0

The general solution of this equation is quite complicated but
in the limit & >> 1, that corresponds to w, — 0, we remain with
the following limiting form that can be easily deduced from eq
V1.8 by setting x(w) =~ x(w,) on the interval [0, w,]

1 h?

-= for any hy and wy << 1

e~ gl ——
NET w2

This form of the eigenenergy has already been derived by a

completely different route in a short exposition of the present
work.2 Evidently in the limit of very small intersurface separations
the major contribution to ey comes from the steric interactions
that are due to the impenetrability of the boundary surfaces to
the polymer beads. Electrostatic interactions represent only a
first-order correction to pure steric interactions.

The WKBJ solution can be in principle extended to the whole
range of w, values. One has to be aware, however, that this
solution is strictly valid only if €y and h2/2 are two large equiv-
alents,?? a statement that is strictly true only in the limit of w,

.= 0. The solutions eq VI.6 are therefore exact for wy — 0,
_approximative for intermediate values of wy, and highly unreliable
for wy > 1. With this caveat in mind one can investigate the
boundary condition eq V1.8 also for intermediate values of wy.

In the regime of intermediate to large wy, A is also quite (ex-
ponentially) small and can be safely ignored if compared with ey.
This leads to the following form of the boundary condition eq VI8

- e5'/%(wy — tanh (wp)) + tanh (wp)[ey + ho? coth (2wy)]!/2 =~
¥ ut
 (VL10)

(VL9)
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which can be solved for ey only in the case that Ay < x/2. The
approximate solution of the above boundary condition for inter-
mediate to large values of w, has the form

T 1 T

~|z—hy) —— <z z .
€y (2 ho) (w0)2 for ho 2 and Wy 1 (VI 11)
It is clear from the above discussion that the branching point A,
= /2 should be viewed upon as a WKBJ approximation to the
exact condition Ay = j,, that can be derived from eq V1.4 in the
limit of wy — .

A more complicated situation arrises if x(w) < 0 or equivalently
if Jex] > h?/2, corresponding to the regime above the branching
point, by > = /2. If we define w, in this case as a “turning point”
of x(w)

B2
—ler + > cosh 2w,) =0 (VL.12)
than by properly extending the WKBJ solution beyond the turning
point??> we remain with

(ot "
¥(w) ~ | les - 5 cosh (2w) | cosh f [lflvl'

h 1/2
—cosh(2w)] ) 0<w<w,

-1/4
Y(w) ~ (h cosh (2w) — leNl) [e”° cos (% - E(w)) +
Mo sin (112 + E(w))]; w> w, (VL13)
where the following definitions have been used

W h2 1/2
M, = f Jeud = 5 cosh @w) | dw
0

Ew) = f ["32 cosh (2w) - |eN|] dw  (VL14)

According to the previous discussion, the solution branch eq
VI.13 is applicable only if 4y > #/2 and even then for not too small
values of wy, since for wy, — O the representation in eq V1.7 is
always the correct one. The boundary condition for this branch
of the WKBJ solution that determines the values of the eigen-
energy reduces to the form

cos (% - £(w0)) + Mo sin (-112 + g(wo)) =0

It is quite straightforward to establish that the solution of the above
boundary condition, £, lies in the interval 3x/4 < { < 3x/4 + x /6,
no matter what the value of M. It is therefore always close to
3x/4 and we shall take this value as a starting point for the
subsequent discussion.

We start by investigating the regime far away from the turning
point, where wy > w, » 1. In this case we can deduce the
approximate form for £(wy)

£~ —(x/2) (leM)'/? + ho coth (wy) (VL16)
that leads to the following expression for the energy eigenvalue

en =~ —(2/7)2(ho[coth (wp)]'/? - £)?,
for hy > x/2 and wo » 1 (VL.17)

Aside from the small difference between ¢ and 3x/4 we see
that the above form of the energy eigenvalue is completely con-
sistent with the one found through the analysis of the exact solution
in the regime where it leads to negative eigenenergy, cf. eq VL.5.
For negative eigenstates with sufficiently large energy eigenvalue,
the asymptotic analysis of the exact solution and the WKBJ
approximation both lead to basically identical dependence of the
energy eigenvalue on the intersurface separation.

(VL15)
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For the same branch of the WKBJ solution we can also obtain
an approximative solution of the boundary condition eq VI.15 when
wo S 1. In this case we assume the following ansatz

lel = (K2/2) cosh (2w;) - A (VL18)

with A « h%/2, which can be justified a posteriori by showing
that in the limit by > /2, wy S 1, it leads to A ~ (£hg2/2)%3,
being indeed much smaller than h2/2. In the limit of small to
intermediate w, we therefore obtain the following approximation
for the eigenenergy

h? | &\ 2

= cosh (2wy) + - == cosh 2w, (VL.19)
This form of the eigenenergy has also already been derived by
a completely different route in a short presentation of this work.2
It corresponds to the interaction of two charged surfaces with an
intervening polyelectrolyte chain that is partially collapsed to the
surfaces due to the electrostatic attraction between the surface
charges and the oppositely charged polymer beads. If one ap-
proximates cosh 2wy ~ 1 + [(ka)?/2], the quadratic dependence
on (xa) suggests that the most important contribution to the free
energy in this limit is elastic in origin, with regions of the po-
lyelectrolyte chain that are not trapped in the vicinity of both
surfaces and extend from one surface to the other one acting as
“entropic springs” drawing the surfaces together. The electrostatic
interactions between polymer beads and oppositely charged sur-
faces thus act as an external field stretching the polymer. This
stretching reduces the number of possible configurations of the
polymeric chains, thus diminishing its entropy in proportion to
the square of its average extension.'®

We can now state the final forms of the intersurface pressure
that follows from the above discussion. Taking into account the
definition eq IV.7 we can write

_1eF 2 N 1
202 3 7 S(20)

ot [ N} 1 o2 )1
(_z(“"E) "2 —2)—2

€€EGK’ €€gK a

which is a universal limiting form of the pressure for small sep-
arations, independent of the absolute magnitude of the electrostatic
coupling in the system as long as it remains small. It is therefore
obvious that for small separations the system acts as if it would
be effectively discharged with electrostatic effects entering only
as a first-order perturbation to the entropically driven repulsion.
The above form of the pressure agrees with the perturbation result
eq IIL.11 except for the term corresponding to the polymer
electrostatic self-energy which is excluded from eq VI.20 in view

of the condition A « 1.

Next we state the forms of the pressure for intermediate to large

separations that depend crucially on the electrostatic coupling in
the system, quantified by the value of A,

for (xa) — 0 (VL.20)

42 N(r )2 1
~ kT—N—|= - _—
P kT3 .NS 3 h 22y
1o T
i sinh™ (ka) for hy < 3 (VIL.21)

or analogously

('(1)2(2)2 N{ hox ( 31) . _2(xa)
1’~—kT24 - .NS 2 h0—4 sinh > +

for hy > % (V1.22)

14 sinh2 (xa)
4 e

(24) Chan, D.; Davies, B.; Richmond, P. J. Chem. Soc., Faraday Trans.
2 1976, 72, 1584.

(25) Mansfield, M. L. J. Chem. Phys. 1988, 88, 6570.

(26) Podgornik, R. Chem. Phys. Lett. 1990, 174, 191.

Podgornjy

For smaller values of the intersurface spacing, Wo S 1, the
corresponding pressure can be obtained from eq VI.19 in the form

1o or| N . ) pe
P =~ ( 4 Z“O(N S)) sinh™2 (xa) for hy > 3
(VL)

The above approximate forms of the pressure have a very limiteq
range of validity especially in the regime of large intersurface
spacings in agreement with the general caveat for the range of
validity of the WKBJ approximation. Most notably eq VL2
cannot remain valid in the strict limit of wy — = where the
solutions of the boundary condition have to be derived from the
more general eq VI.4.

This ends our discussion of the case I', A << 1. The other
limiting case that is amenable to a simple analytical treatmeny
is conversely the case T', A >> 1. In this case the presence of mobile
ions is irrelevant since their contribution to the local charge balance
in the system is small. Therefore, eqs V.1 are reduced to the
following form of a one-dimensional Hartree equation

il S ede=o oz

where we have introduced the following dimensionless variables
6870

N
€€ol?

B=

x =Nz, xp=Ng%a; y= %XB‘Z“EN
(V1.25)

Furthermore, the electroneutrality condition in this specific case
can be reduced to a simplified statement that o = 7N (N, /S). The
surface free energy density in this limit can be derived in the
following form

F= kTNg g)\gz/’(y(xo) + xg) (V1.26)

The dependence of y on x; is obtained from the boundary condition
at the impenetrable walls, stating that the solution of eq VI.24
should satisfy y(x==%x,) = 0. We shall not proceed by solving
eq VI.24 numerically but shall rather obtain an approximate
analytical solution, which displays all the relevant features of the
numerical solution. This approximate analytical solution can be
arrived at by developing the last term in eq V1.24 into a Taylor
series around x = x,. The limitations of this approximation are
discussed in ref 20. In this manner the following approximate
equation of the general Airy type is obtained from eq VI.24
dxy
d? +(+x)y=0 forx=0 (V1.27)

the unnormalized solution of which can be written as
¥(x) ~ Bi'(-y) Ai(-y-x) — Ai"(-y) Bi(-y—x) (V1.28)

where Ai(z) and Bi(z) are the two independent solutions of the
Airy’s equation and the prime stands for the derivative with respect
to the argument. .

After the boundary condition ¥(x,) = 0 is solved the explicit
dependence of the dimensionless eigenenergy on x, is obtained
that leads to the following asymptotic forms for the surface free
energy density :

: NP (1)2 1.1
= i LY ey VI1.29)
e T = KN 6( 2] 2 Tt ) (
lim % = kTN 'Iz’\az’ ’(al'o -le exp[-{Ap'/?a*?] + )
k‘l/’a—»e S 6 2

(V1.30)
where aij is the first zero of the Airy’s function of the first k‘ind.
i.e., Ai(-ai;) = 0, while @ = Bi(~aiy)/Ai"(-ai,). In the limit of

small separations again the dominant contribution to the free
energy comes from entropically generated repulsion while the
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! electrostatic interactions enter only as a first-order perturbation.
In the opposite extreme of large separations eq V1.30 the dominant
contribution to F comes from the bridging attraction due to the
soft, electrostatic absorption of the polymeric chains to the surfaces.
%]t should be noted that the transition from repulsive to attractive
forces is accompanied by a conformational transition of the
- polymer density distribution from monomodal to bimodal form
+ (see ref 20 for details). It is only in this limit that the nature of
%the forces (attraction—repulsion) follows exactly the form of the
%Po]ymer density profile.

" The form of the free energy eq V1.30 does also provide some
#gdditional information on the magnitude of the forces when the
pet pressure is attractive. It follows from eq VI.30 that in the
regime where attraction predominates one has

2
P~ _% &0)‘3‘/6@\/; exp[-¥iAs'@¥?]  (VL31)

Though the attractive pressure decays approximately exponentially
it does follow from the above approximate form that its magnitude
is not inherently bounded, as is the case with the Lifshitz—van der
Waals interactions, which are bounded from above by the ideally
polarizable half-spaces case. One can therefore reach quite high

attractive pressures if the surface charge density is large enough
H and the ionic screening is negligible. There is therefore no need
to invoke hydrophobic interactions to rationalize the existence of
strong attractive interactions between charged surfaces in the
presence of flexible polyelectrolytes,3* since the bridging mech-
anism can lead to attractions of a magnitude well above the
Lifshitz—van der Waals forces.

VII. Discussion

In the preceding sections we have developed a SCF method for
obtaining the intersurface forces operating in a system composed
of charged polymeric chains immersed into an electrolyte confined
between two charged, impenetrable walls, where the charges on
the polymers are of opposite sign to the charges fixed on the
surfaces. In the outline the method is quite similar to the SCF
approach'® widely used in the analysis of the excluded volume
interactions of polymers in the bulk or in confined regions.”? There
are, however, two main differences. First of all the pair potential
is Coulombic whereas it is approximated by a delta function in
the excluded volume case. Furthermore, interactions between
different segments of the polyelectrolyte chain as well as the
interactions between the polyelectrolyte beads with charged walls
';;._\ are mediated by the presence of mobile ions.

N

The SCF-PBP approximation introduced in this work has direct
ties with work on the single polyelectrolyte chain by Kholodenko
and Beyerlein'4 except that what we wish to approximate is the
free energy rather than the Green’s function or its moments. There
exists also a direct connection between the Poisson—Boltzmann
theory used in the case of a nonhomogeneous electrolyte. In the
Poisson—Boltzmann treatment the local density of the mobile
charge carriers is approximated by p(r) ~ e#®, if e is the
, magnitude of the charge residing on the charge carriers. In the
F . ‘case treated here, eqs II1.14 and II1.15 simply state that in the

case of a charged polymer the local density of polymeric charge
 has the form p,(r) ~ (e#7*®), where the averaging has to be done
~ over internal polymeric degrees of freedom, i.e., positions of the
¢ beads along all the polymeric chains.
There are several drawbacks of the SCF method, and besides
: the standard ones?® one should mention that at this level of so-
% phistication one is unable to treat effects like electrostatic stiffening
> of the chain. Nevertheless, by making an analogy with the sem-
- iinfinite case,'* one can conjecture that inclusion of terms beyond
- the SCF approximation would lead to an effective step length that
§ Wwould probably among other things depend also on the value of

Intersurface spacing.

|

B ¥
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ademic Press: New York, 1983.
(28) Wennerstrém, H.; Jonsson, B. J. Phys. Chem. 1988, 29, 6044.
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Though the SCF-PBP approximation scheme represents a
natural extension of the usual Poisson—Bolzmann approximation
to the case of added charged polymers, the results obtained in this
work bear only a minor resemblance to the predictions that follow
from the standard PB equation. In general there are three
tendencies that govern the interactions between charged surfaces
in the presence of confined polyelectrolyte chains. First of all,
there is the entropic contribution of the sterically excluded con-
figurations amounting to a repulsion between the surfaces. Second,
the direct electrostatic interactions between the surfaces have the
same origin as in the standard PB case and correspond to the
changes in free energy due to the double-layer overlap on approach
of the two charged boundaries. Third, the soft adsorption of the
polymeric chains to the surfaces also stems from the electrostatic
interactions between the polymeric charges and the charges fixed
to the walls. However, in spite of the electrostatic nature of this
effect, it promotes (bridging) attraction between the bounding
surfaces that Can in certain cases overwhelm the other two re-
pulsive contritutions. This effect has no counterpart in the
standard PB theory or its modifications and has its root solely in
the connectivity of the confined polymeric chains.

Thus the most important difference with respect to standard
PB results is that the solutions of the SCF-PBP equations lead
to a range of intersurface separation values where the interaction
forces between the bounding surfaces can become attractive. As
already argued by Akesson, Woodward, and Jonsson'? in the case
of two charged surfaces with intervening polyelectrolyte chains
without any added electrolyte, the mechanism responsible for
attractive forces is the bridging of polyelectrolyte chains between
the surfaces. The same mechanism was established in section V
to be the primary source of attraction also for the model system
analyzed in this work. This bridging is quite different in character
from the one promoted by short-range surface interactions trying
to trap the chain that wanders into the vicinity of the surfaces.
It corresponds to local minima in the polymer energy close to the
surfaces that can be quite long ranged (on the order of x!) with
a depth depending on the intersurface separation. As such the
attractive interactions also have an electrostatic background and
are therefore dependent on the value of the electrostatic coupling
in the system specified by the dimensionless coupling constants
I’ and \. Furthermore, as the separation is varied a window exists
in the T, A space where the pressure can go from repulsive to
attractive and back to repulsive. This effect has some very in-
teresting consequences in terms of the equilibrium of the system
under an imposed external stress that will be investigated in a
forthcomming publication.’? The notion of an electrostatically
driven soft adsorption differs in content from the usual adsorption
problems encountered in the context of confined polymers.
Usually, as e.g. in the model system treated by Chan, Davies, and
Richmond,?* the adsorption energy is considered as a constant
independent of system parameters. This leads to an important
consequence, namely, that the interaction energy as a function
of the intersurface separation, a, has no turning points, being of
the same sign for all values of a. The sign of course depends on
the value of the adsorption energy but it does not depend on a.
In the case of electrostatically driven “soft adsorption”, the ad-
sorption energy, on the contrary, is'not a constant but depends
in a nontrivial way on the system parameters, most notably the
electrostatic coupling and the intersurface spacing. The behavior
of a confined polyelectrolyte chain could therefore be understood
in the context of an intersurface separation dependent adsorption
energy. Furthermore, the transition between monomodal and
bimodal conformations of the polymeric chains bears a lot of
resemblance to the coil-stretch transition of polymers in external
fields. Mansfield? has recently shown how a transition between
a unimodal and bimodal distribution of a polymer can be ac-
complished by varying the strength of an external field stretching
the polymer. This external field would in our case correspond
to the electrostatic mean potential created by the fixed charges
on both surfaces, the strength of which varies with the separation.

It is interesting to compare our results with the studies of
interactions between the surfaces in the presence of electrically
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neutral polymers. The situation there too is quite complicated
since the interaction forces are not amenable to any general form,
their behavior depending on the amount of the dissolved polymer,
solvent quality and the nature of polymer—surface interactions.
However, one can establish a close correspondence between the
results derived in this contribution and the force profile in the case
of strongly adsorbed polymers at partial coverage.?’ The inter-
action potential there remains repulsive at small separations but
develops an attractive minimum at low coverages (corresponding
to small T' in our case) that gradually disappears as the coverage
is increased. Bridging is claimed as the only cause of this at-
traction. Work of Muthukumar and Ho? which is methodo-
logically quite close to our analysis also yields force curves that
can be correlated with the behavior of our system. In their case
the bridging of the polymeric chains is promoted by attractive van
der Waals interactions between polymer beads and bounding
surfaces. In fact our model system (electrostatic interactions
between polymer beads are repulsive) would correspond closely
to case 5 of their Conclusions.section, which describes polymers
above O temperature at different magnitudes of the van der Waals
attraction between polymer beads and the bounding surfaces.

Finally one should add a note on the experimental situation.
At this point we were unable to find any systematic investigation

(30) de Gennes, P.-G. Macromolécules 1982, 15, 492.

(31) Olivares, W.; McQuarrie, D. A. J. Phys. Chem. 1980, 84, 863.
Henderson, D.; Blum, L.; Lebowitz, J. L. J. Electroanal. Chem. 1979, 102,
315.

(32) Podgornik, R. Manuscript in preparation.

of forces between charged surfaces in the presence of polyelec.
trolytes that we could use for a direct comparison with our the.
oretical predictions. However, investigations of the short-range
order of silica particles in the presence of cationic polymers™ or
the direct measurements of forces between mica surfaces in the
presence of polypeptides* do suggest that strong attractions exist
between charged particles in a solution of oppositely charged
polyelectrolyte. Furthermore, a study of forces between micq
surfaces in the presence of poly(2-vinylpyridine)3 that is fully
charged in acidic solutions gives strong support to the bridg;
origin of attractive interactions. The polyelectrolyte bridges were
inferred from the force curves following surface adhesion and were
seen to disappear for shorter polymer chain lengths. The cop.
clusions reached in our work are in sound qualitative agreement
(see, e.g., Figure 8a) with the results of the above work.

The problem of interactions between charged surfaces with
intervening polyelectrolyte chains is of a far greater complexity
than one would naively expect on the basis of our experience with
the Poisson—Boltzmann equation. From the theoretical side it is
indeed quite fascinating since it leads to a blending of different
methods used profusely by the molecular force and the polymer
community.
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Colloid Polym. Sci. 1988, 266, 101.
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Physicochemical Studies on Microemulsions: Test of the Theories of Percolation
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On the basis of percolation results of 32 water/oil microemulsion systems, a detailed analysis of the validity of the effective
medium theory (EMT), EMT with dipole—dipole interaction (EMTDD), and Bernasconi-Weismann (BW) theory has been
made. It has been found that most of the systems obey either the EMT or the EMTDD (chain) formalism whereas a slender
few follow the EMTDD (cluster) and BW formalisms. The results suggest that the internal structure of microemulsions
can be either isolated, randomly dispersed spheres or spheroidal aggregates formed by dipolar interaction.

Introduction

A conducting microheterogeneous dispersion in a very weakly
conducting or nonconducting medium may show a rapid rise in
conductance above a threshold concentration. This phenomenon
is called percolation.!* Water-in-oil (w/0) microemulsions
stabilized by ionic surfactants or by an ionic surfactant and a
cosurfactant are microheterogeneous dispersions of conducting
water droplets. They often exhibit percolation in conductance
after a threshold concentration of water.”!! Quantitative the-
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oretical treatment on the percolation phenomenon in micro-
emulsions has been attempted with the help of the effective me-
dium theory (EMT)."*!2 In a recent work, Fang and Venable"’
have used the EMT theory of Bottcher!? for quantitative ac-
counting of the structural parameters of several microemulsion
systems. The equation has been also used by Bisal et al.!* for
quantitative description of a good number of w/o microemulsion
systems with special reference to their structural properties. The
results have been shown to be comparable with those obtained
from other sophisticated methods, viz., light scattering, small-angle
neutron scattering, fluorescence quenching, etc.

For microheterogeneous dispersions of metal and metal oxides
in suitable media,!’ the EMT theory has been shown to be often
inedaquate, and modifications of the equation have been put
forward. The percolation threshold (one-third of the volume
fraction of the dispersion) according to the EMT theory of
Bottcher!? is not always the practical limit. A number of au-
thors*!>17 have suggested that the percolation thresholds realized
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